Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
ACS Synth Biol ; 13(4): 1323-1331, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38567812

RESUMO

Porcine deltacoronavirus (PDCoV) is a major cause of diarrhea and diarrhea-related deaths among piglets and results in massive losses to the overall porcine industry. The clinical manifestations of porcine diarrhea brought on by the porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and PDCoV are oddly similar to each other. Hence, the identification of different pathogens through molecular diagnosis and serological techniques is crucial. Three novel detection methods for identifying PDCoV have been developed utilizing recombinase-aided amplification (RAA) or reverse transcription recombinase-aided amplification (RT-RAA) in conjunction with Pyrococcus furiosus Argonaute (PfAgo): RAA-PfAgo, one-pot RT-RAA-PfAgo, and one-pot RT-RAA-PfAgo-LFD. The indicated approaches have a detection limit of around 60 copies/µL of PDCoV and do not cross-react with other viruses including PEDV, TGEV, RVA, PRV, PCV2, or PCV3. The applicability of one-pot RT-RAA-PfAgo and one-pot RT-RAA-PfAgo-LFD were examined using clinical samples and showed a positive rate comparable to the qPCR method. These techniques offer cutting-edge technical assistance for identifying, stopping, and managing PDCoV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Vírus da Diarreia Epidêmica Suína , Pyrococcus furiosus , Doenças dos Suínos , Animais , Suínos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Pyrococcus furiosus/genética , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Sensibilidade e Especificidade , Diarreia/diagnóstico , Recombinases
2.
Viruses ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543748

RESUMO

Monkeypox virus (MPXV), the pathogen responsible for the infectious disease monkeypox, causes lesions on the skin, lymphadenopathy, and fever. It has posed a global public health threat since May 2022. Highly sensitive and specific detection of MPXV is crucial for preventing the spread of the disease. Pyrococcus furiosus Argonaute (PfAgo) is an artificial DNA-guided restriction cleavage enzyme programmable with 5'-phosphorylated ssDNA sequences, which can be developed to specifically detect nucleic acids of pathogens. Here, a PfAgo-based system was established for the detection of MPXV-specific DNA targeting the F3L gene. A short amplicon of 79 bp could be obtained through a fast PCR procedure, which was completed within 45 min. Two 5'-phosphorylation guide DNAs were designed to guide PfAgo to cleave the amplicon to obtain an 18 bp 5'-phosphorylation sequence specific to MPXV, not to other orthopoxviruses (cowpox, variola, and vaccinia viruses). The 18 bp sequence guided PfAgo to cleave a designed probe specific to MPXV to emit fluorescence. With optimized conditions for the PfAgo-MPXV system, it could be completed in 60 min for the detection of the extracted MPXV DNA with the limit of detection (LOD) of 1.1 copies/reaction and did not depend on expensive instruments. Successful application of the PfAgo-MPXV system in sensitively detecting MPXV in simulated throat swabs, skin swabs, sera, and wastewater demonstrated the system's good performance. The PfAgo platform, with high sensitivity and specificity established here, has the potential to prevent the spread of MPXV.


Assuntos
Varíola dos Macacos , Pyrococcus furiosus , Humanos , Pyrococcus furiosus/genética , Vírus da Varíola dos Macacos/genética , DNA , Proteínas Argonautas/genética
3.
Biosens Bioelectron ; 254: 116230, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520983

RESUMO

African swine fever (ASF), which is casued by African swine fever virus (ASFV), is a fatal infectious disease of pigs that results in significant losses to the breeding industry. Therefore, screening and detection are crucial for the control and prevention of the ASFV. Argonaute is a new detection tool that is being extensively used due to its high specificity and programmability. This study reports on a new nucleic acid assay method, termed REPD, which uses recombinase-aided amplification and restriction endonuclease-assisted Pyrococcus furiosus argonaute (PfAgo) detection. One-pot REPD was developed for the detection of ASFV. The one-pot REPD could detect a single copy of ASFV nucleic acid and showed no cross-reactivity with other pathogens. Detection in clinical samples was 100% consistent with the results of real-time PCR analysis. The results showed that the one-pot REPD assay is convenient, sensitive, specific, and potentially adaptable to the detection of ASFV. In summary, this study highlights a novel method that can be employed for the detection of pathogens.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Técnicas Biossensoriais , Ácidos Nucleicos , Pyrococcus furiosus , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Pyrococcus furiosus/genética , DNA Viral , Sensibilidade e Especificidade
4.
J Biosci Bioeng ; 137(5): 329-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461105

RESUMO

Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of ß-1,4-glucosidic linkages in cellulose and ß-glucan structures that contain ß-1,3- and ß-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus furiosus , Celulase/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Glicosilação , Celulose/metabolismo , Estabilidade Enzimática
5.
Food Microbiol ; 120: 104475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431321

RESUMO

Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.


Assuntos
Alicyclobacillus , Pyrococcus furiosus , Sucos de Frutas e Vegetais , Pyrococcus furiosus/genética , Alicyclobacillus/genética , DNA , Frutas
6.
Mol Cell ; 84(4): 675-686.e4, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295801

RESUMO

The Argonaute nuclease from the thermophilic archaeon Pyrococcus furiosus (PfAgo) contributes to host defense and represents a promising biotechnology tool. Here, we report the structure of a PfAgo-guide DNA-target DNA ternary complex at the cleavage-compatible state. The ternary complex is predominantly dimerized, and the dimerization is solely mediated by PfAgo at PIWI-MID, PIWI-PIWI, and PAZ-N interfaces. Additionally, PfAgo accommodates a short 14-bp guide-target DNA duplex with a wedge-type N domain and specifically recognizes 5'-phosphorylated guide DNA. In contrast, the PfAgo-guide DNA binary complex is monomeric, and the engagement of target DNA with 14-bp complementarity induces sufficient dimerization and activation of PfAgo, accompanied by movement of PAZ and N domains. A closely related Argonaute from Thermococcus thioreducens adopts a similar dimerization configuration with an additional zinc finger formed at the dimerization interface. Dimerization of both Argonautes stabilizes the catalytic loops, highlighting the important role of Argonaute dimerization in the activation and target cleavage.


Assuntos
Pyrococcus furiosus , Pyrococcus furiosus/genética , Dimerização , DNA/genética , Proteínas Argonautas/metabolismo , Domínios Proteicos
7.
Appl Microbiol Biotechnol ; 108(1): 137, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229331

RESUMO

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, induces severe vomiting and acute watery diarrhea in unweaned piglets. The pig industry has suffered tremendous financial losses due to the high mortality rate of piglets caused by PEDV. Consequently, a simple and rapid on-site diagnostic technology is crucial for preventing and controlling PEDV. This study established a detection method for PEDV using recombinase-aided amplification (RAA) and Pyrococcus furiosus Argonaute (PfAgo), which can detect 100 copies of PEDV without cross-reactivity with other pathogens. The entire reaction of RAA and PfAgo to detect PEDV does not require sophisticated instruments, and the reaction results can be observed with the naked eye. Overall, this integrated RAA-PfAgo cleavage assay is a practical tool for accurately and quickly detecting PEDV. KEY POINTS: • PfAgo has the potential to serve as a viable molecular diagnostic tool for the detection and diagnosis of viral genomes • The RAA-PfAgo detection technique has a remarkable level of sensitivity and specificity • The RAA-PfAgo detection system can identify PEDV without needing advanced equipment.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Pyrococcus furiosus , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Pyrococcus furiosus/genética , Doenças dos Suínos/diagnóstico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Diarreia , Recombinases
8.
J Agric Food Chem ; 72(2): 1354-1360, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174972

RESUMO

Pyrococcus furiosusArgonaute (PfAgo) emerged as a novel endonuclease for the nucleic acid test recently. However, the input of exogenous guide DNA (gDNA) to activate PfAgo has reduced its flexibility. In this work, an enzyme-assisted endogenous gDNA generation-mediated PfAgo for the target detection strategy, termed EGG-PAD, was proposed. With the aid of EcoR Ι, the target double-strand DNA was cut, producing a phosphate group at the 5' end, functioning as gDNA to activate PfAgo for nucleic acid detection. The applicability of this assay was tested in the detection ofAlicyclobacillus acidoterrestris, a bacterium causing the spoilage of fruit juice, showing excellent sensitivity and specificity, ascribed to the "duplex amplification and triple insurance" mechanism. Moreover, EGG-PAD exhibited superior versatility in the identification of common foodborne pathogens. This powerful platform could also be an on-site test tool for detecting nucleic acid-containing organisms such as tumor cell, pathogen, and virus in the future.


Assuntos
Alicyclobacillus , Pyrococcus furiosus , Pyrococcus furiosus/genética , DNA , Sucos de Frutas e Vegetais , Alicyclobacillus/genética
9.
Biol Chem ; 404(11-12): 1085-1100, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37709673

RESUMO

Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.


Assuntos
Proteínas Arqueais , Pyrococcus furiosus , Pequeno RNA não Traduzido , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Mensageiro/metabolismo , RNA Arqueal/genética , RNA Arqueal/química , RNA Arqueal/metabolismo , Sítios de Ligação , Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pequeno RNA não Traduzido/metabolismo
10.
J Fish Dis ; 46(12): 1357-1365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635423

RESUMO

White spot disease (WSD) in shrimp is an acute infectious disease caused by white spot syndrome virus (WSSV). WSD has seriously threatened the security of shrimp farming, causing huge economic losses worldwide. As there is currently no effective treatment for WSD, developing early detection technologies for WSSV is of great significance for the prevention. In this study, we have established a detection method for WSSV using a combination of recombinase polymerase amplification (RPA) and Pyrococcus furiosus Argonaute (PfAgo). We have achieved a detection sensitivity of single copy per reaction, which is more sensitive than the previously reported detection methods. Additionally, we have demonstrated high specificity. The entire detection process can be completed within 75 min without the need for precise thermal cyclers, making it suitable for on-site testing. The fluorescence signal generated by the reaction can be quantified using a portable fluorescence detector or observed with the naked eye under a blue light background. This study provides an ultrasensitive on-site detection method for WSSV in shrimp aquaculture and expands the application of PfAgo in the field of aquatic disease diagnosis.


Assuntos
Doenças dos Peixes , Penaeidae , Pyrococcus furiosus , Vírus da Síndrome da Mancha Branca 1 , Animais , Recombinases , Vírus da Síndrome da Mancha Branca 1/genética , Pyrococcus furiosus/genética , Aquicultura/métodos
11.
Appl Environ Microbiol ; 89(6): e0056323, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289085

RESUMO

A genome-scale metabolic model, encompassing a total of 623 genes, 727 reactions, and 865 metabolites, was developed for Pyrococcus furiosus, an archaeon that grows optimally at 100°C by carbohydrate and peptide fermentation. The model uses subsystem-based genome annotation, along with extensive manual curation of 237 gene-reaction associations including those involved in central carbon metabolism, amino acid metabolism, and energy metabolism. The redox and energy balance of P. furiosus was investigated through random sampling of flux distributions in the model during growth on disaccharides. The core energy balance of the model was shown to depend on high acetate production and the coupling of a sodium-dependent ATP synthase and membrane-bound hydrogenase, which generates a sodium gradient in a ferredoxin-dependent manner, aligning with existing understanding of P. furiosus metabolism. The model was utilized to inform genetic engineering designs that favor the production of ethanol over acetate by implementing an NADPH and CO-dependent energy economy. The P. furiosus model is a powerful tool for understanding the relationship between generation of end products and redox/energy balance at a systems-level that will aid in the design of optimal engineering strategies for production of bio-based chemicals and fuels. IMPORTANCE The bio-based production of organic chemicals provides a sustainable alternative to fossil-based production in the face of today's climate challenges. In this work, we present a genome-scale metabolic reconstruction of Pyrococcus furiosus, a well-established platform organism that has been engineered to produce a variety of chemicals and fuels. The metabolic model was used to design optimal engineering strategies to produce ethanol. The redox and energy balance of P. furiosus was examined in detail, which provided useful insights that will guide future engineering designs.


Assuntos
Pyrococcus furiosus , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Etanol/metabolismo , Fermentação , Engenharia Genética , Acetatos/metabolismo
12.
Appl Environ Microbiol ; 89(6): e0001223, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162365

RESUMO

Genetic engineering of hyperthermophilic organisms for the production of fuels and other useful chemicals is an emerging biotechnological opportunity. In particular, for volatile organic compounds such as ethanol, fermentation at high temperatures could allow for straightforward separation by direct distillation. Currently, the upper growth temperature limit for native ethanol producers is 72°C in the bacterium Thermoanaerobacter ethanolicus JW200, and the highest temperature for heterologously-engineered bioethanol production was recently demonstrated at 85°C in the archaeon Pyrococcus furiosus. Here, we describe an engineered strain of P. furiosus that synthesizes ethanol at 95°C, utilizing a homologously-expressed native alcohol dehydrogenase, termed AdhF. Ethanol biosynthesis was compared at 75°C and 95°C with various engineered strains. At lower temperatures, the acetaldehyde substrate for AdhF is most likely produced from acetate by aldehyde ferredoxin oxidoreductase (AOR). At higher temperatures, the effect of AOR on ethanol production is negligible, suggesting that acetaldehyde is produced by pyruvate ferredoxin oxidoreductase (POR) via oxidative decarboxylation of pyruvate, a reaction known to occur only at higher temperatures. Heterologous expression of a carbon monoxide dehydrogenase complex in the AdhF overexpression strain enabled it to use CO as a source of energy, leading to increased ethanol production. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes. This work opens the door to the potential for 'bioreactive distillation' since fermentation can be performed well above the normal boiling point of ethanol. IMPORTANCE Previously, the highest temperature for biological ethanol production was 85°C. Here, we have engineered ethanol production at 95°C by the hyperthermophilic archaeon Pyrococcus furiosus. Using mutant strains, we showed that ethanol production occurs by different pathways at 75°C and 95°C. In addition, by heterologous expression of a carbon monoxide dehydrogenase complex, ethanol production by this organism was driven by the oxidation of carbon monoxide. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes.


Assuntos
Pyrococcus furiosus , Fermentação , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Monóxido de Carbono/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Ácido Pirúvico/metabolismo , Acetaldeído/metabolismo
13.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241758

RESUMO

The development of tungsten biochemistry is sketched from the viewpoint of personal participation. Following its identification as a bio-element, a catalogue of genes, enzymes, and reactions was built up. EPR spectroscopic monitoring of redox states was, and remains, a prominent tool in attempts to understand tungstopterin-based catalysis. A paucity of pre-steady-state data remains a hindrance to overcome to this day. Tungstate transport systems have been characterized and found to be very specific for W over Mo. Additional selectivity is presented by the biosynthetic machinery for tungstopterin enzymes. Metallomics analysis of hyperthermophilic archaeon Pyrococcus furiosus indicates a comprehensive inventory of tungsten proteins.


Assuntos
Aldeído Oxirredutases , Pyrococcus furiosus , Aldeído Oxirredutases/genética , Tungstênio/química , Oxirredução , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo
14.
Viruses ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992305

RESUMO

Parvovirus B19 (B19V) is pathogenic to humans and causes various human diseases. However, no antiviral agents or vaccines currently exist for the treatment or prevention of B19V infection. Therefore, developing sensitive and specific methods for B19V infection diagnosis is essential for accurate diagnoses. Previously, a Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas12a (cpf1)-based electrochemical biosensor (E-CRISPR) with a picomole sensitivity for B19V detection was established. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the nonstructural protein 1 (NS1) region of the B19V viral genome (abbreviated B19-NS1 PAND). Benefiting from independent protospacer adjacent motif (PAM) sequences, PfAgo can recognize their target with guide DNA (gDNA) that is easy to design and synthesize at a low cost. In contrast to E-CRISPR, without preamplification with Polymerase Chain Reaction (PCR), the Minimum Detectable Concentration (MDC) of three guide- or single guide-mediated B19-NS1 PAND was about 4 nM, approximately 6-fold more than E-CRISPR. However, when introducing an amplification step, the MDC can be dramatically decreased to the aM level (54 aM). In addition, the diagnostic results from clinical samples with B19-NS1 PAND revealed 100% consistency with PCR assays and subsequent Sanger sequencing tests, which may assist in molecular testing for clinical diagnosis and epidemiological investigations of B19V.


Assuntos
Infecções por Parvoviridae , Parvovirus B19 Humano , Pyrococcus furiosus , Humanos , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Proteínas Argonautas/genética , DNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Viral/genética , DNA Viral/metabolismo
15.
J Agric Food Chem ; 71(1): 944-951, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548210

RESUMO

Enterocytozoon hepatopenaei (EHP) is one of the most serious pathogens in shrimp farming. This study combines recombinase polymerase amplification (RPA) with the Argonaute from Pyrococcus furiosus (PfAgo) and establishes a sensitive and reliable method for on-site detection of EHP. With careful screening of gDNA and optimization of the reaction, the method shows a good specificity and reaches a sensitivity of single copy per reaction, which is higher than the sensitivity of the currently available molecular assays. The whole procedure can be finished within 1.5 h including the sample processing time and only requires minimum laboratory support, which is user-friendly for on-site environments. This is the first application of PfAgo for the diagnosis of infectious diseases in seafood supply chains. It provides a reliable method for on-site detection of EHP in shrimp farms and establishes a groundwork for multiplex detection of important pathogens in seafood farming using PfAgo.


Assuntos
Penaeidae , Pyrococcus furiosus , Animais , Reação em Cadeia da Polimerase/métodos , Recombinases/genética , Pyrococcus furiosus/genética , Nucleotidiltransferases
16.
Extremophiles ; 26(3): 36, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385310

RESUMO

Pyrococcus furiosus is a hyperthermophilic archaeon with three effector CRISPR complexes (types I-A, I-B, and III-B) that each employ crRNAs derived from seven CRISPR arrays. Here, we investigate the CRISPR adaptation response to a newly discovered and self-transmissible plasmid, pT33.3. Transconjugant strains of Pyrococcus furiosus exhibited dramatically elevated levels of new spacer integration at CRISPR loci relative to the strain harboring a commonly employed, laboratory-constructed plasmid. High-throughput sequence analysis demonstrated that the vast majority of the newly acquired spacers were preferentially selected from DNA surrounding a particular region of the pT33.3 plasmid and exhibited a bi-directional pattern of strand bias that is a hallmark of primed adaptation by type I systems. We observed that one of the CRISPR arrays of our Pyrococcus furiosus laboratory strain encodes a spacer that closely matches the region of the conjugative plasmid that is targeted for adaptation. The hyper-adaptation phenotype was found to strictly depend both on the presence of this single matching spacer as well as the I-B effector complex, known to mediate primed adaptation. Our results indicate that Pyrococcus furiosus naturally encountered this conjugative plasmid or a related mobile genetic element in the past and responds to reinfection with robust primed adaptation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pyrococcus furiosus , Pyrococcus furiosus/genética , Sistemas CRISPR-Cas , Plasmídeos/genética , DNA/genética
17.
Nat Commun ; 13(1): 2697, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577775

RESUMO

Plasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. Here, we report the development of a versatile, robust, automated end-to-end platform named PlasmidMaker that allows error-free construction of plasmids with virtually any sequences in a high throughput manner. This platform consists of a most versatile DNA assembly method using Pyrococcus furiosus Argonaute (PfAgo)-based artificial restriction enzymes, a user-friendly frontend for plasmid design, and a backend that streamlines the workflow and integration with a robotic system. As a proof of concept, we used this platform to generate 101 plasmids from six different species ranging from 5 to 18 kb in size from up to 11 DNA fragments. PlasmidMaker should greatly expand the potential of synthetic biology.


Assuntos
DNA , Pyrococcus furiosus , DNA/genética , Enzimas de Restrição do DNA/genética , Plasmídeos/genética , Pyrococcus furiosus/genética , Biologia Sintética/métodos
18.
Environ Microbiol ; 24(4): 2029-2046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106897

RESUMO

Microbes preserve membrane functionality under fluctuating environmental conditions by modulating their membrane lipid composition. Although several studies have documented membrane adaptations in Archaea, the influence of most biotic and abiotic factors on archaeal lipid compositions remains underexplored. Here, we studied the influence of temperature, pH, salinity, the presence/absence of elemental sulfur, the carbon source and the genetic background on the lipid core composition of the hyperthermophilic neutrophilic marine archaeon Pyrococcus furiosus. Every growth parameter tested affected the lipid core composition to some extent, the carbon source and the genetic background having the greatest influence. Surprisingly, P. furiosus appeared to only marginally rely on the two major responses implemented by Archaea, i.e. the regulation of the ratio of diether to tetraether lipids and that of the number of cyclopentane rings in tetraethers. Instead, this species increased the ratio of glycerol monoalkyl glycerol tetraethers (GMGT, aka. H-shaped tetraethers) to glycerol dialkyl glycerol tetraethers in response to decreasing temperature and pH and increasing salinity, thus providing for the first time evidence of adaptive functions for GMGT. Besides P. furiosus, numerous other species synthesize significant proportions of GMGT, which suggests that this unprecedented adaptive strategy might be common in Archaea.


Assuntos
Archaea , Pyrococcus furiosus , Archaea/química , Archaea/genética , Carbono , Glicerol , Lipídeos de Membrana/química , Pyrococcus furiosus/genética
19.
Int J Biol Macromol ; 204: 617-626, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35150781

RESUMO

RecJ is ubiquitous in bacteria and Archaea, and play an important role in DNA replication and repair. Currently, our understanding on biochemical function of archaeal RecJ is incomplete due to the limited reports. The genome of the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes one putative RecJ protein (Tga-RecJ). Herein, we report biochemical characteristics and catalytic mechanism of Tga-RecJ. Tga-RecJ can degrade ssDNA in the 5'-3' direction at high temperature as observed in Thermococcus kodakarensis RecJ and Pyrococcus furiosus RecJ, the two closest homologs of the enzyme. In contrasted to P. furiosus RecJ, Tga-RecJ lacks 3'-5' ssRNA exonuclease activity. Furthermore, maximum activity of Tga-RecJ is observed at 50 °C ~ 70 °C and pH 7.0-9.0 with Mn2+, and the enzyme is the most thermostable among the reported RecJ proteins. Additionally, the rates for hydrolyzing ssDNA by Tga-RecJ were estimated by kinetic analyses at 50 °C ~ 70 °C, thus revealing its activation energy (10.5 ± 0.6 kcal/mol), which is the first report on energy barrier for ssDNA degradation by RecJ. Mutational studies showed that the mutations of residues D36, D83, D105, H106, H107 and D166 in Tga-RecJ to alanine almost completely abolish its activity, thereby suggesting that these residues are essential for catalysis.


Assuntos
Proteínas Arqueais , Pyrococcus furiosus , Thermococcus , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , Exonucleases/metabolismo , Pyrococcus furiosus/genética , Thermococcus/genética
20.
Int J Biochem Cell Biol ; 144: 106171, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093572

RESUMO

B-family DNA polymerases, which are found in eukaryotes, archaea, viruses, and some bacteria, participate in DNA replication and repair. Starting from the N-terminus of archaeal and bacterial B-family DNA polymerases, three domains include the N-terminal, exonuclease, and polymerase domains. The N-terminal domain of the archaeal B-family DNA polymerase has a conserved deoxyuracil-binding pocket for specially binding the deoxyuracil base on DNA. The exonuclease domain is responsible for removing the mismatched base pair. The polymerase domain is the core functional domain and takes a highly conserved structure composed of fingers, palm and thumb subdomains. Previous studies have demonstrated that the thumb subdomain mainly functions as a DNA-binding element and has coordination with the exonuclease domain and palm subdomain. To further elucidate the possible functions of the thumb subdomain of archaeal B-family DNA polymerases, the thumb subdomain of Pyrococcus furiosus DNA polymerase was mutated, and the effects on three activities were characterized. Our results demonstrate that the thumb subdomain participates in the three activities of archaeal B-family DNA polymerases as a common structural element. Both the N-terminal deoxyuracil-binding pocket and thumb subdomain are critical for deoxyuracil binding. Moreover, the thumb subdomain assists DNA polymerization and hydrolysis reactions, but it does not contribute to the fidelity of DNA polymerization.


Assuntos
Pyrococcus furiosus , Sequência de Aminoácidos , DNA/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/química , Exonucleases/metabolismo , Hidrólise , Modelos Moleculares , Nucleotídeos , Polimerização , Estrutura Terciária de Proteína , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Polegar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...